The pH dependence of red cell membrane transport of titratable anions studied by NMR spectroscopy.
نویسندگان
چکیده
The effects of varying extracellular pH on the rates of uptake of titratable anions by human erythrocytes under conditions of constant intracellular pH have been determined for a series of highly related anions, the phosphate "analogs." These compounds are simply substituted phosphorus oxyacids, differing in the number and acidity of titratable protons: phosphate (HPO4(2-), pKa 6.8); phosphite (HPO3(2-), pKa 6.4); hypophosphite (H2PO2-); methylphosphonate ((CH3)PO3(2-), pKa 7.4); dimethylphosphinate ((CH3)2PO2-); fluorophosphate [PO3F2-, pKa 4.7); and thiophosphate (HSPO3(2-), pKa 5.5). Suspensions of intact, Cl(-)-loaded erythrocytes (intracellular pH, 7.2) were incubated at 37 degrees C in isotonic buffers (pH 4-8) containing 60 mM phosphate analog for specified time intervals, whereupon influx was halted by the addition of 1 mM 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), an inhibitor of anion exchange. The intracellular anion concentrations were determined from 31P or 19F nuclear magnetic resonance spectra from the erythrocyte suspensions. The influx rates for the titratable phosphate analogs exhibited bimodal pH dependence, reaching maximal levels at pH values that increased with increasing anion pK. This pH-dependent behavior is consistent with a transport channel that contains a titratable regulatory site which interacts with the translocated anion. Based upon the Henderson-Hasselbalch equation, the probability that a titratable anion will have an electric charge of equal magnitude to that of the titratable carrier is highest at a pH value exactly midway between the pK of the regulatory site and that of the anion. The pH maxima observed for the phosphate analogs indicate a pK for this site of 5.5 at 37 degrees C. Intracellular pH changes associated with influx indicated that transport of the "fast" anion phosphite is largely in monoionized form. Intracellular pH changes associated with transport of slow anions were predominantly determined by partial ionic equilibrium effects and did not indicate the ionization state of the transported anion.
منابع مشابه
Some effects of low pH on chloride exchange in human red blood cells
In order to test the range of pH values over which the titratable carried model for inorganic anion exchange is valid, chloride self-exchange across human red blood cells was examined between pH 4.75 and 5.7 at 0 decrees c. It was found that chloride self-exchange flux had a minimum near pH 5 and increased again with further increase in hydrogen ion activity. The Arrhenius activation energy for...
متن کاملTitration of transport and modifier sites in the red cell anion transport system
This work demonstrates the existence of titratable transport and modifier sites in the anion transport system of human red cells. Effects of alkaline extracellular pH on chloride exchange were studied up to pH 13 at 0 degrees C. The studies revealed two sets of reversible titratable groups. One set, having a pK of or approximately 11, appeared to be identical with the inhibitory halide-binding ...
متن کاملModification of a carboxyl group that appears to cross the permeability barrier in the red blood cell anion transporter
A recently developed method for converting protein carboxyl groups to alcohols has been used to examine the functional role of carboxyl groups in the red blood cell inorganic anion-transport protein (band 3). A major goal of the work was to investigate the carboxyl group that is protonated during the proton-sulfate cotransport that takes place during net chloride-sulfate exchange. Three kinds o...
متن کاملEffects of external pH on substrate binding and on the inward chloride translocation rate constant of band 3
To test the hypothesis that amino acid residues in band 3 with titratable positive charges play a role in the binding of anions to the outside-facing transport site, we measured the effects of changing external pH (pH(O)) on the dissociation constant for binding of external iodide to the transport site, K(O)(I). K(O)(I) increased with increasing pH(O), and a significant increase was seen even a...
متن کاملShape response of human erythrocytes to altered cell pH.
Alteration of red blood cell (RBC) pH produces stomatocytosis (at low pH) and echinocytosis (at high pH). Cell shrinkage potentiates high pH echinocytosis, but shrinkage alone does not cause echinocytosis. Mechanisms for these shape changes have not been described. In this study, measured dependence of RBC shape on cell pH was nonlinear, with a broad pH range in which normal discoid shape was m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 263 3 شماره
صفحات -
تاریخ انتشار 1988